Xavier: A Reinforcement-Learning Approach to
TCP Congestion Control

(CS221 Final Report

Akshay Agrawal
akshayka@stanford.edu
July 24, 2016

In this paper, I present Xavier, a congestion control policy informed by rein-
forcement learning and a first step towards adaptible control and analyze its
performance on two simulated network topologies. Experimental results hint at
the utility of using reinforcement-learning for congestion control while also re-
vealing difficulties entailed by doing so.

1 Introduction

Controlling congestion is a fundmanetal problem in computer networks. If
the input load is greater than the output bandwidth at a particular switch,
the bottleneck’s queue begins to fill up and we say that it is congested. In
pathological scenarios and under certain protocols, the saturation of buffers,
or bufferbloat [5], can lead to congestion collapse, a condition in which con-
gestion reaches a level sufficient to limit useful communication and encourage
redundant packet retransmissions [9]. The twin problems of bufferbloat and
congestion control have come into sharp relief over the past decade. In 2002,
100 GB of IP traffic were trasmitted globally per second; in 2014, that num-
ber rose to 16,144 GB/s, and by 2019, Cisco predits that it will rise to 51,794
GB/s [7].

Congestion control is fundamentally a Markovian process — that of deciding
whether or not to send a packet at a given time step [13]. Protocol designers
have hand-rolled policies for TCP and all its flavors; these policies maintain
congestion control windows, or bounds on the number of outstanding (unac-
knowledged) bytes that the sender will tolerate at any given moment. The
policies vary in how they manage the window, but what is common among
them is that they are heuristically-driven and designed without explicit objec-
tive functions in mind [13]. Indeed, computer scientists (and economists) have
struggled to characterize the teleology of TCP. As such, it is not surprising that,

when compared to Remy, a congestion avoidance algorithm that was generated
by explicitly modeling TCP as an end-to-end, cooperative, non-zero sum and
Markovian game, congestion control algorithms like TCP Tahoe, Reno, New
Vegas, and even the in-network XCP and Cubic-over-sfqCoDel perform poorly,
where performance is measured by average throughput and delay for senders in
a particular experiment [13].

While Remy does outperform existing TCP congestion control algorithms, it
resembles them insofar as it is an inflexible algorithm. Remy is designed offline,
where it learns a policy via repeated simulation trials; however, once deployed,
Remy’s mappings from states to actions remains fixed. Because Remy is de-
signed for specific network topologies and loads, its performance falls below
traditional congestion control algorithms as soon as the network conditions de-
viate from those for which it was designed [13]. And so we are left with a
less-than-ideal trade-off: Either we settle for suboptimal performance that gen-
eralizes, or strive for better performance and lock ourselves into fixed network
conditions in the process.

In this paper, I explore the question: Is it possible to circumvent the trade-off be-
tween generalizability and throughput-delay by designing congestion control al-
gorithms that learn online? In particular, I investigate whether TCP-compatible
congestion control algorithms informed by Q-learning might 1) acheive high
throughput and low delay and 2) generalize across varying network topologies.

2 Task Definition

We observe that the problem of congestion control can be modeled as a Marko-
vian process — at each time step, the controller must decide whether or not to
send a packet; equivalently, the controller must determine the packet send rate.
The state needed to inform controller actions does not depend historical states
or actions, as we will see in section IV. The controller has two (competing) goals:
maximizing throughput and minimizing delay.

To make this definition more concrete, in this paper, all of the discussed al-
gorithms modulate the packet send rate by maintaining a congestion control
window (CWND), which determines the amount of bytes the sender can ship
over the network when it decides to do so. Packet send events are triggered
by the receipt of acknowledgements (ACKs); in other words, we discretise the
problem of modulating the packet send rate on a per-ack basis. In particular,
upon the arrival of an ACK, the controller performs an action upon the CWND.
This controller definition is in line with that adopted by the majority of popular
TCP congestion control algorithms [9], and by Remy as well [13].

3 Literature Review

A sizeable amount of work has gone into building smarter congestion control
algorithms. Winstein, et. al push TCP to its limits by performing an exhaustive
search for an optimal congestion control policy for a given network, modeling
the problem as a partially observable decentralized decision process. These
policies, however, fail to generalize beyond their trained domains [13]. Dong, et.
designed PCC, a policy that learns online by measuring the impact controller
actions have upon performance and performing gradient ascent. While PCC’s
performance is promising, widespread deployment seems unlikely as it cannot
be easily integrated into existing TCP implementations, unlike Remy [4].

The authors in [1] apply Q-learning to packet routing, as do those in [2], [10],
and [3]. [6] and [11] both apply reinforcement learning to congestion control,
though their algorithms are designed for specialty networks (multimedia and
ATM, respectively).

4 Models

In this section, I present three classes of models: baselines, oracles, and Xavier.
The baselines greedily maximize either throughput or minimize delay; the or-
acles are all variants of Remy [13]; and Xavier is the algorithm that is the
namesake of this paper.

4.1 Greedy Maximizers as Baselines

For a given set of network conditions, I define my oracle as the Remy congestion
control algorithm that was explicitly designed for those conditions.

I define two baselines: one that greedily maximizes throughput and one that
greedily minimizes delay. The former algorithm simply keeps its congestion
control window at 40 times the maximum segment size (MSS). The latter sends
packets one-by-one, keeping the window at 1 MSS. Intuitively, if the throughput
maximizer acheives low delay in a given network, then it must be the case that
the experimental conditions did not necesitate congestion control. And if the
delay minimizer itself leads to high delays, then it is likely that, no matter
what controller is deployed, the network will experience congestion. Thus, these
baselines allow us to determine whether the problem of congestion control is
relevant and tractable one for particular networks.

4.2 Remy as an Oracle

For a given set of network conditions, I define my oracle as the Remy conges-
tion control algorithm that was explicitly designed for those conditions. Remy
models are created by exhaustively searching for an optimal control policy for a
given network, and I, as others have done [4], treat their performance as an ap-
proximation for points on the Pareto-optimal tradeoff curve between throughput
and delay.

4.3 Xavier: A Reinforcement Learning Congestion Con-
trol Algorithm

Xavier is a Q-learning informed congestion control algorithm. In particular,
I frame the problem of maintaining a sending packets as a Markov Decision
Problem and use SARSA with linear function approximation to learn Q-values.

4.3.1 Action Space

Like TCP, Xavier approaches congestion control by maintaining a CWND; for
each ACK it receives, Xavier picks among four actions:

1. exponential growth: CWND :=CWND + 1
2. linear growth: CWND := CWND + zwwp
3. linear decrease: CWND := CWND + z'xp
4. no-op: CWND :=CWND

Actions are triggered by the receipt of non-duplicate ACKs — for each ACK
received, the controller chooses and executes and action. An epsilon-greedy
approach was used, ¢ = 0.2, in order to encourage the controller to explore the
state space. In computing g-values, Xavier uses a linear function approximation.

4.3.2 State Space

The state space is informed by two key variables, EWMA-RTT and RTT-
RATIO. The former is an exponentially weighted moving average of the round
trip time — upon arrival of a new ACK, EWMA-RTT is updated to be 0.8 times
its current value plus 0.2 times that of the RTT that arrived. While EWMA-
RTT serves as a proxy for delay, RTT-RATIO serves as a proxy for congestion
— it is defined as the most recently seen RTT divided by the smallest RTT
ever observed. The intuition is that the smallest RTT ever observed likely cor-
responds closely to the RT'T expected if the network switch queues were empty.
If RTT-RATIO is one, then it will be likely that packet queues are empty or

close to empty. Ratios are stored with the precision of one decimal point, to
avoid overfitting to small changes in the ratio.

Each state is decomposed into the following identity feature templates:
1. RTT-RATIO-Equals ____
2. EWMA-RTT-Equals ____
3. ACTION-Equals ____

The state additionally contains the cross-features 1x3 and 2x3 — that is, features
are generated for (RTT-RATIO, ACTION) pairs and (EWMA-RTT, ACTION)
pairs. The reason for doing so is to capture the local effects that actions have
upon particular ratios and expected RTTs.

4.3.3 Reward Function

Each state, action pair triggers k rewards, where k is the number of packets sent
as a result of the update to CWND. In particular, the i-th reward, ¢ from 1 to
k, is defined as the percent change A in the EWMA-RTT, where the current
EWMA-RTT is compared against that measured at the time of the control
action responsible for generating packet i (call this EWMA-RTT-PREV, plus a
positive offet S if the action grew the congestion control window:

_ EWMA-RTT-PREV — EWMA-RTT

A EWMA-RTT-PREV

r=A+p

Observe that A is positive when the expected RTT decreases, zero when it does
not change, and negative when it increases. The parameter 5 serves to pressure
the controller to send packets.

5 Experimental Design

I am using Network Simulator [8], version 2 — also known as ns-2 — to both
design algorithms and run experiments. In particular, I am building off the
custom flavor of ns-2 designed by the authors in [13]; doing so allows me to
contextualize my results, as I can directly compare the performance of my algo-
rithms with others’. Another argument for using ns-2 is reproducibility: ns-2 is
the perhaps the most-used network simulation software suite. An obvious draw-
back, however, is that of fidelity to the real world, or the possible lack thereof.
Unfortunately, I do not have the resources to run experiments on actual test
beds.

T T T
+\MaxThr0ughput
\ |
2
(+RemyCC-0.1
0 Sabiad
g 1.5 1 T T 1 ,@QernyCC—l
5
o
=
S
g 1r 7
=
'_
0.5
0 | | | | +MinDelay
64 32 16 8 4 2 1

Queueing delay (ms)

Figure 1: Figure 1. Dumbbell, 15MB Bottleneck. Remy models were trained
for this topology, and appear to form a Pareto-optimal frontier.

Experiments were run on a dumbbell topology that has eight senders, eight
receivers, and a single bottleneck link in between them. Each sender is paired
uniquely to a receiver. Senders switch between on and off, as drawn from an
exponential distribution; while on, packets are drawn from empirical distribu-
tions, as in [13]. This topology, while simple, is useful in that such bottlenecks
occur frequently in physical networks.

6 Results and Analysis

In this section, I present and analyze experimental results. I begin with compar-
ing the performance of Xavier against the baselines and oracle, as well as against
common TCP congestion control algorithms. I then perform an error analysis
to guage the relative impact of state-space features and to gain insight into the
reward function. All of the following results were obtained by running 10 sim-
ulations of each experiment and charting the median throughput and queuing
delay exhibited; the ellipses are 1 — o contours of the maximum-likelihood Gaus-
sian fitting the points. This experimental evaluation methodology was borrowed
from [13].

h

RémMyCG-10

A @qéﬁéﬁe%ff

0.5

| | ewReno
% 0.4 k-MaxThrotighput bt - -
EL IV ane 1} @*ﬂ"%\ ﬁxcp
= | \ W \ \
= \/ \ \I‘V \
g 03 T Xavier-CVIB-XB
2 | [+XRvier- -X-
=2 |
=
o
L
'_

o2ttt

01 I —
+MinDelay

0 | | | | | | | | | |
1024 512 256 128 64 32 16 8 4 2 1

Queueing delay (ms)

Figure 2: Figure 2. Dumbbell, 3MB Bottleneck.

6.1 Versus Baselines and Oracles

Figure 1 shows the performance of Xavier, the baselines, oracles, and common
TCP congestion control algorithms for the dumbbell topology with a 15MB
bottleneck switch. The baselines, labeled MaxThroughput and MinDelay, opti-
mize their respective goals at the cost of the maximizing delay and minimizing
throughput, respectively, suggesting that the problem of congestion control is
relevant here. The ellipse labeled CMB-X-B corresponds to the full Xavier
model described in section 4.3, with 8 tuned to 2.0. The RemyCC models
correspond to the oracles, and the numbers following them correspond to the
extent to which the model was trained to prioritize throughput — the lower the
number, the more throughput was prioritized.

Figure 2 charts the same for a dumbbell topology with a 3MB bottleneck link —
notably, the Remy models were not trained for this topology and as such perform
poorly, seeing 4-8X more delay than Xavier did. This result is promising because
it suggests that, up to a small reduction in throughput, Xavier can generalizes
better than Remy does.

6.2 Throughput-Delay Tradeoff in Xavier

The throughput-delay tradeoff in Xavier is controlled through the parameter 3.
In particular, Figure 3 demonstrates that with 5 = 0 (labeled CMB-X), Xavier

]]
0.8 ‘ - R
k\B—X—B—ONLY
0.7 S,
E 0.6 [~ (T -1
3 +CMB-X-B
2 osf \ - .
5 —/
5 04
=
o
£ 03| | - A
0.2 - | R
—
0.1 _\iE‘NQB %
0 | |
8 4 2 1

Queueing delay (ms)

Figure 3: Figure 3. Throughput-Delay Tradeoff in Xavier.

degenerates into the greedy delay policy. Inspecting the weights of the features,
the linear decrease action and the states coupled with it had the largest weight
— Xavier CMB-X prefered to control the congestion control window, as doing
so would minimize delay and thus lead to the largest rewards as controlled by
A. (Indeed, inspecting feature weights was crucial in tweaking the design of
Xavier.) Similarly, fixing A = 0 (labeled CMB-X-B-ONLY) led to increased
throughput but increased delay as well. That the delay for this variant was
still only 12ms was somewhat suprising, but can be explained by noting that
smaller delays translate into more frequent ACKs which in turn translate into
the accrual of 8 rewards.

It is unfortunate that the throughput-delay tradeoff has to be controlled by
manually tuning the parameter §; non-constant definitions of S were experi-
mented with, such as the percent change in an exponentially weighted moving
average of the interarrival time between ACKs, but these metrics were unable
to reliably capture the effect of actions upon throughput.

6.3 Relative Importance of Features

Figure 4 charts the performance of Xavier as features were removed from it,
one-by-one. Taking variability into account, the models do not differ a great
deal; nonetheless, fixing our attention to the medians, there is a trend that
adding features tends to increase throughput. In particular, adding EWMA to

Throughput (Mbps)

0.2 |- T —

0.1 - 1 —

0 |
8 4 2 1

Queueing delay (ms)

Figure 4: Figure 4. Relative Importance of Features. CMB-X-B is the full
Xavier model (CMB short for “combined features”), CMB-B is Xavier without
the cross-features, EWMA-B is CMB-B without the RTT-RATIO features, and
RATIO-B is CMB-B without the EWMA features

the RATIO model to produce CMB-B and then adding the cross features to
produce the full Xavier model both increase the median throughput — both
EWMA and the cross features capture historical performance, and the cross
features in particular enables Xavier to better relate actions to their effects on
congestion and delay, so the increase in throughput makes intuitive sense.

7 Future Work

The experimental results are promising in that they suggest that a reinforcement-
learning approach to TCP congestion control is viable — Xavier performs sim-
ilarly to traditional end-to-end congestional control models and, in the 3MB
topology, achieves significantly lower delay. However, as the comparison to
Remy in the 15MB experiment shows, Xavier is far from optimal. Future work
will focus on (1) designing a reward function more sensitive to the effect of ac-
tions on throughput, (2) experimenting further with the state space and using
more intelligent feature extractors, and (3) using a non-linear function approx-
imation.

The notion of a reward in a multi-agent system such as this one is noisy because
it is difficult to isolate the effects that other agents’ actions have upon any
given agent’s state. That is to say, each agent’s state is effected by other agents’
actions, making it hard to reliably give out rewards and penalties. As such,
it may be necessary to consider models alternative to Q-Learning, or at least

generalizations of Q-Learning to multi-agent cooperative systems such as the
one presented in [12].

8 Conclusion

Traditional TCP congestion control, in fixing its mapping from state to control
actions, renders itself unable to adapt to changes in network topology and load.
This paper proposed Xavier, a first-step towards a more generalizble and flexible
model of TCP-based congestion control. Experimental results demonstrate that
Xavier performs on roughly par with TCP New Reno and other fixed, end-to-end
control algorithms, but underperforms when compared to a hyper-optimized,
topology-specific algorithm. Nonetheless, the results are promising: Xavier’s
performance is acceptable and can only improve with more intelligent reward
functions and more sophisticated reinforcement learning algorithms.

References

[1] J. A. Boyan and M. L. Littman. Packet routing in dynamically changing
networks: A reinforcement learning approach. Advances in neural infor-
mation processing systems, pages 671-671, 1994.

[2] S. Choi and D.-Y. Yeung. Predictive g-routing: A memory-based reinforce-
ment learning approach to adaptive traffic control. Advances in Neural
Information Processing Systems, 8:945-951, 1996.

[3] G. Di Caro and M. Dorigo. Antnet: Distributed stigmergetic control for
communications networks. Journal of Artificial Intelligence Research, pages
317-365, 1998.

[4] M. Dong, Q. Li, D. Zarchy, P. B. Godfrey, and M. Schapira. Pcc: Re-
architecting congestion control for consistent high performance. arXiv
preprint arXiw:1409.7092, 2014.

[5] J. Gettys and K. Nichols. Bufferbloat: Dark buffers in the internet. Queue,
9(11):40, 2011.

[6] K.-S. Hwang, C.-S. Wu, and H.-K. Su. Reinforcement learning cooperative
congestion control for multimedia networks. In Information Acquisition,
2005 IEEE International Conference on, pages 6—pp. IEEE.

[7] C. V. N. Index. The zettabyte era—trends and analysis. Cisco white paper,
2013.

[8] T. Issariyakul and E. Hossain. Introduction to network simulator NS2.
Springer Science & Business Media, 2011.

10

[9]
[10]

[11]

J. Nagle. Congestion control in ip/tcp internetworks. 1984.

L. Peshkin and V. Savova. Reinforcement learning for adaptive routing. In
Neural Networks, 2002. IJCNN’02. Proceedings of the 2002 International
Joint Conference on, volume 2, pages 1825-1830. IEEE, 2002.

A. Tarraf, I. W. Habib, T. N. Saadawi, et al. Reinforcement learning-based
neural network congestion controller for atm networks. In Military Com-
munications Conference, 1995. MILCOM’95, Conference Record, IEEE,
volume 2, pages 668-672. IEEE, 1995.

G. Tesauro. Extending g-learning to general adaptive multi-agent systems.
In Advances in neural information processing systems, page None, 2003.

K. Winstein and H. Balakrishnan. Tcp ex machina: Computer-generated
congestion control. In ACM SIGCOMM Computer Communication Review,
volume 43, pages 123-134. ACM, 2013.

11

