
A Cutting-Plane Alternating Projections Algorithm

A Cutting-Plane, Alternating Projections Algorithm for
Conic Optimization Problems

Akshay Agrawal akshayka@cs.stanford.edu

Department of Computer Science

Stanford University

Stanford, CA 94305, USA

Advised by: Stephen Boyd

Abstract

We introduce a hybrid projection-localization method for solving large convex cone pro-
grams. The method interleaves a series of projections onto localization sets with the clas-
sical alternating projections method for convex feasibility problems; the problem is made
amenable to the method by reducing it to a convex feasibility problem composed of a
subspace and a cone via its homogeneous self-dual embedding.

At each step, the only requirement on the localization set, besides convexity, is that it
contain the intersection of the subspace and the cone that define the feasibility problem.
The key task, then, is to instantiate localization sets that are both informative and easy to
project on — there is a trade-off between these two desiderata.

Our primary contributions are three-fold. First, we present the projection-localization algo-
rithm family and prove that it is convergent. Second, we empirically evaluate the algorithm
obtained when the localization sets are polyhedrons defined by cutting planes obtained from
projecting upon the subspace and the convex cone. Our findings are promising, but not yet
entirely satisfying: our method significantly outperforms alternating projections on com-
plex problems, where the cone is a cartesian product of multiple cones, but either matches
or underperforms the alternating directions method of multipliers. For very simple prob-
lems, we demonstrate empirically that this method is, at least in appearance, quadratically
convergent. Finally, not to be overlooked, our third contribution is the publication of
software1 that enables clients to rapidly prototype and evaluate projection algorithms for
convex feasibility and conic problems.

Keywords: Optimization, Cone programming, Cutting planes, Alternating projections

1. Introduction

Because they are robust, easy-to-implement, and scalable, projection methods, which in-
volve a series of iterations in which one or more projections onto convex sets are computed,
are an appealing choice of algorithm to solve convex problems. In particular, projection
methods are applied to convex feasibility problems, where the inputs are two convex sets
with non-empty intersection, and the output is any point in their intersection. These

1. https://github.com/akshayka/projection-methods/.

c©2017 Akshay Agrawal.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/.

https://github.com/akshayka/projection-methods/
https://creativecommons.org/licenses/by/4.0/

Agrawal

methods are practical, for there exists a link between convex feasibility problems and cone
programs: any cone program for which strong duality holds can be summarized by its KKT
system, and finding a point that satisfies the KKT system can be reduced to a convex
feasibility problem.

Cone programs have emerged as the de-facto intermediate representation for convex pro-
grams — most convex programs encountered in practice can be canonicalized to cone pro-
grams. For example, CVXPY, a domain specific language for convex optimization, compiles
its inputs to cone programs (Diamond and Boyd, 2016). Indeed, many statistical problems,
including classical convex model fitting problems like training an `1-regularized logistic
regression model, can be reduced to convex feasibility problems by the canonicalization
procedure described by Chu et al. (2013) and carried out by CVXPY.

O’Donoghue et al. (2016) were the first to apply a projection method to the homogeneous,
self-dual embeddings of the conic primal-dual pair. Their solver, called SCS (splitting conic
solver), uses the alternating direction method of multipliers (ADMM) to solve the embedded
problem. ADMM has become eminent among projection methods for its agreeablility to
distributed computation (Boyd et al., 2011). SCS, as such, scales to large problem instances
(see Boyd et al., 2011, for a survey of ADMM); however, it is not suitable for cases in which
high accuracy is desired, as ADMM exhibits slow tail convergence (He and Yuan, 2012).

ADMM is not a new method: it can be traced back to the 1950s (Gabay and Mercier,
1976). The history of projection methods reaches still further back. In the 1933, John
von Neumann introduced the now-classical method of alternating projections method for
finding a point in the intersection of two subspaces; the algorithm, as the name implies,
simply projects alternatingly onto the two subspaces and converges to a fixed point that lies
within the intersection (Von Neumann, 1950). Years later, Cheney and Goldstein (1959)
proved that the method remains viable when the subspaces are replaced with convex sets. A
rich literature on projection methods emerged in the intervening decades, which is surveyed
by, for example, Bauschke and Borwein (1996), among others. And while von Neumann’s
method remains a classic historical example, it has not enjoyed the resurgence in popularity
that ADMM has seen, precisely because its convergence in practice is often quite slow
(indeed, as shown in Boyd, 2003, alternating projections is but a subgradient method in
disguise).

The authors of SCS did not benchmark ADMM against other projection methods. This
fact, along with the demonstrated effectiveness of classical projection methods like ADMM
and the elegant simplicity of von Neumann’s alternating projections method, furnishes the
motivation for our research: how might the alternating projections method compare to
ADMM when applied to the homogeneous self-dual embedding of a cone program, and
might there be a systematic way of accelerating the alternating projections method to
render it competitive to ADMM?

In this paper, we present first steps towards answering these motivating questions. In par-
ticular, we present a family of projection algorithms for solving convex feasibility problems
and thus convex cone programs. We instantiate a method from our family that scales to
large problems and involves but first-order-like computational effort. Following in the foot-

2

A Cutting-Plane Alternating Projections Algorithm

steps of O’Donoghue et al. (2016), we apply it to the homogeneous self-dual embedding
of the primal-dual pair. The embedding, in turn, furnishes primal or dual certificates of
infeasibility when needed.

The remainder of this paper is structured as follows. In section 2, we review the convex
feasibility problem and state it in full generality, as this is the problem to which our methods
will be applied; in section 3, we motivate the convex feasibiltiy problem by reviewing cone
programs and reviewing a reduction from cone programs to convex feasibility problems via
the homogeneous self-dual embedding; in section 4, we present our family of algorithms
and prove that the algorithms described by the family are convergent; in section 5, we
instantiate a particular algorithm, which we dub the cutting-plane, alternating projections
method, from our family; in section 6, we present numerical experiments that benchmark
our algorithm against competitors; in section 7, we outline future work; and in section 8,
we provide closing remarks.

2. The Convex Feasibility Problem

We will concern ourselves with solving convex feasibility problems for the rest of this paper.
The inputs to a convex feasibility problem are two convex sets, C1 ⊆ Rn and C2 ⊆ Rn, and
the goal is to find any point that lies in the intersection of C1 and C2

2. A standard form
for subc a problem is:

find x
subject to x ∈ C1 ∩ C2.

(2.1)

The problem of finding a point in the intersection of an arbitrary number of sets S1, S2, . . . , SN
can be reduced to (2.1) by taking C1 := S1×S2×· · ·×SN , C2 := {x | x1 = x2 = · · · = xN},
where x is a block vector composed of the vectors x1, x2, · · · , xN .

2.1 Algorithms

Many projection methods exist that target the convex feasibility problem, and moreover
these methods can be generalized using the theory of monotone operators (Ryu and Boyd,
2016). In this section, however, we review with a narrow focus the two algorithms that
are relevant to our particular study — von Neumann’s method of alternating projections
and ADMM. In describing these algorithms, we use the setting of (2.1) and assume that
C1 ∩ C2 6= ∅.

2. The theory of projection methods is often set against the backdrop of Hilbert spaces, but we stick to
Euclidean space to simplify the exposition.

3

Agrawal

2.1.1 The Method of Alternating Projections

The method of alternating projections is the simplest of projection methods. It can be
described with a single update equation:

xk+1 := ΠC2 (ΠC1(xk)) , (2.2)

where ΠC denotes the orthogonal projection operator for the set C and x0 is an arbitrary
initial iterate. Cheney and Goldstein (1959) proved that, so long as the sets C1 and C2 are
closed, convex, and non-empty, then the sequence {xk} converges to a point in C1 ∩ C2;
Bauschke and Borwein (1993) showed that the convergence is linear if the sets satisfy certain
regularity conditions. A key step in proving convergence of alternating projections is to show
that the sequence {xk} is Fejér monotone with respect to C1 ∩ C2, which means that,

(∀x ∈ C1 ∩ C2)(∀k ∈ N) ‖xk+1 − x‖2 ≤ ‖xk − x‖2.

Fejér monotonicity holds for the sequence generated by the method of alternating projec-
tions because orthogonal projections decrease distances to points that live in the projected-
upon (convex) set. The idea of Fejér monotonicity is key, and it is what will let us build
upon the alternating projections method to yield new algorithms in section 4.

2.1.2 The Alternating Directions Method of Multipliers

The alternating directions method of multipliers, or ADMM, is an operator splitting method
that can be applied to problems of the form

minimize f(x) + g(z)
subject to x = z.

(2.3)

The algorithm is

xk+1 = argminx(f(x) + (ρ/2)‖x− zk − λk‖22) (2.4)

zk+1 = argminz(g(z) + (ρ/2)‖xk+1 − z − λk‖22) (2.5)

λk+1 = λk − xk+1 + zk+1, (2.6)

and it converges (roughly speaking) whenever f and g are closed, proper, and convex (see
Boyd et al., 2011, for an additional mild assumption required for convergence). Letting IC
be the indicator function of the set C and taking f(x) = IC1(x) and g(z) = IC2(z) yields
a problem equivalent to (2.1), giving xk+1 = ΠC1(zk − λk), zk+1 = ΠC2(xk+1 + λk). It
is in this sense that ADMM can be seen as a projection method for the convex feasbility
problem.

3. Reducing Cone Programs to Convex Feasibility Problems

A cone program is an optimization problem of the form

minimize cTx
subject to Ax+ s = b

(x, s) ∈ Rn ×K,
(3.1)

4

A Cutting-Plane Alternating Projections Algorithm

where K is a non-empty, closed, convex cone. A dual of (3.1) can be written as

maximize −bT y
subject to −AT y + r = c

(r, y) ∈ {0}n ×K∗,
(3.2)

where K∗ is the dual cone of K. If strong duality obtains for (3.1), then the KKT conditions

Ax? + s? = b, s? ∈ K, AT y? + c = r?, r? = 0, y? ∈ K∗, cTx+ bT y = 0. (3.3)

are both necessary and sufficient for optimality. Because the problem of finding a point
that satisfies the KKT conditions above can be framed as a convex feasibility problem with
an affine set as one input and a cartesian product of cones as the second input, we say that
cone programs reduce to convex feasibility programs.

3.1 Homogeneous Self-Dual Embeddings of Cone Programs

The KKT system (3.3) can be augmented in such a way that solving the augmentation will
yield information about the feasibility or lack thereof of the corresponding cone program.
One such embedding is the homogeneous self-dual embedding (Ye et al., 1994); SCS is
simply an application of ADMM to 3.4. The details of the embedding are not particularly
relevant to our discussion, so we omit them here (see O’Donoghue et al., 2016). Suffice it to
say that the embedding introduces two nonnegative variables, κ and τ , whose values at a
solution are used to either (1) recover an optimal solution to (3.1), (2) produce a certificate
of infeasibility, or (3) if a nonzero solution does not exist, then return an indeterminate
status. In particular, the embedding produces the convex feasibility problem

find (u, v)
subject to Qu = v = 0

(u, v) ∈ C × C∗
, (3.4)

where

u =

xy
τ

 , v =

rs
κ

 , Q =

 0 AT c
−A 0 b
−cT −bT 0

 ,
and C = Rn × K∗ × R+. Note how closely (3.4) resembles (3.3). Note, moreover, that
(3.4) can be formulated as a convex feasibility problem of form (2.1) where the variable
x := (u, v), C1 := C × C∗, and C2 is the subspace {x | [Q,−I]x = 0}.

The problem (3.4) always admits 0 as a trivial solution, so care must be taken to avoid it.
The upshot is that if a solution is found with τ > 0 and κ = 0, then (x/τ, y/τ, s/τ) is a
solution to the primal-dual pair (3.1) and (3.2). To simplify the discussion going fowrard,
we will assume that the primal-dual pairs in question are feasible.

5

Agrawal

4. A Family of Projection-Localization Algorithms

In this section, we present our first contribution: a family of projection algorithms for
solving the convex feasibility problem (2.1). The algorithms can be thought of as hybrid
localization/alternating-projections procedures; in each iteration, we perform a round of
alternating projections and then project the iterate onto a localization set that is known to
contain C1 ∩ C2. Indeed, each localization set is perhaps best thought of as a collection of
true statements that each x ∈ C1 ∩ C2 must satisfy.

In the following two subsections, we describe the family of algorithms in full and prove that
it converges to a point x? ∈ C1 ∩ C2

4.1 Description of the Projection-Localization Algorithm Family

To motivate our algorithm family, let us revisit the alternating projections method. We can
decompose the update (2.2) into the two steps

yk = ΠC1(xk), xk+1 = ΠC2(yk); (4.1)

we refer to these two steps together as one iteration of alternating projections. As mentioned
in section (2.1.1), the only property needed for this algorithm to converge to a fixed point
is Fejér monotonicty of {xk}. The insight is this: instead of returning directly to yk+1 ∈ C1

from xk+1, we can instead move first to any point C1 ∩ C2 that is closer to C1 ∩ C2 than
xk+1 is, in the Euclidean sense. To describe the algorithm family precisely, let Qk be any
convex set such that Qk ⊇ C1∩C2. Note that, unlike traditional localization techniques, the
localization sets Qk need not be bounded nor decreasing in volume. An algorithm belonging
to our family is any algorithm that performs the updates

yk = ΠC1(xk), zk = ΠC2(yk), xk+1 = ΠQk
(zk) (4.2)

during its k-th iteration. Note that though (4.2) says nothing of techniques like over-
projection and heavy-ball momentum, algorithms that use these acceleration techniques
but otherwise resemble (4.2) should be considered morally members of our family.

4.2 Proof of convergence.

Theorem 1 Let C1, C2 be non-empty closed convex sets with C1 ∩ C2 6= ∅. Then the
sequences xk, yk, and zk yielded by iteration of (4.2) converge in norm to a point x? ∈
C1 ∩ C2.

Proof As stated in section (2.1.1), the key step is to verify that the sequence of iterates
produced by (4.2) is Fejér monotone with respect to C1 ∩ C2. After establishing this, we
need only show that a subsequence of the iterates converges (in norm) to a point in C1∩C2:
because a Fejér monotone sequence is decreasing and bounded, this second result will prove
that our sequence converges in norm to a point in C1∩C2. The proof we provide is modeled
after the proof provided by Boyd and Dattorro (2003), though these authors do not set
their proof in the language of Fejér monotonicity.

6

A Cutting-Plane Alternating Projections Algorithm

We begin by showing that, for any x ∈ C1 ∩ C2,

‖xk+1 − x‖2 ≤ ‖zk − x‖2 − ‖zk − xk+1‖2, (4.3)

where the norm is the Euclidean norm. This is true because

‖zk − x‖2 = ‖zk − xk+1 + xk+1 − x‖2

= ‖zk − xk+1‖2 + ‖xk+1 − x‖2 − 2〈zk − xk+1, x− xk+1〉
≥ ‖zk − xk+1‖2 + ‖xk+1 − x‖2,

where the inequality follows because xk+1 is the projection of zk onto Qk and x ∈ Qk, since
Qk ⊇ C1∩C2 by construction, so by convexity of Qk we have that 〈zk−xk+1, x−xk+1〉 ≤ 0.
By similar argumentation, the following two statements can also be shown to be true:

‖yk − x‖2 ≤ ‖xk − x‖2 − ‖xk − yk‖2 (4.4)

‖zk − x‖2 ≤ ‖yk − x‖2 − ‖yk − zk‖2. (4.5)

We can use (4.3), (4.4), and (4.5) to conclude that that the sequence of iterates is Fejér
monotone with respect to C1 ∩ C2; that is,

‖x0 − x‖, ‖y0 − x‖, ‖z0 − x‖, ‖x1 − x‖, · · · (4.6)

is decreasing and bounded, and therefore convergent.

From (4.6) we can observe that ‖yk − x‖ ≤ ‖x0 − x‖, so the sequence yk is bounded. As
such, it has a convergent subsequence with some limit point x? ∈ C1 (since yk ∈ C1 and C1

closed by assumption). All that remains to show is that x? lies in C2 as well.

The Fejér monotonicity of the iterate sequence, together with (4.5), implies that yk con-
verges to zk in norm. This in turn implies that x? ∈ C2, as zk = ΠC2(yk) and C2 is closed.
Taking x to be x?, the fact that a subsequence of (4.6) converges to 0 (which is true because
a subsequence of yk converges to x?) implies that the entire sequence converges to 0, and
in particular that xk, yk, and zk converge in norm to x? ∈ C1 ∩ C2.

5. Cutting-Plane, Alternating Projections for Convex Feasibility

Any policy for generating the localization sets Qk induces an algorithm that belongs to the
projection-localization family described in section 4. In this section, we present a policy
that uses cutting planes obtained by projecting on C1 and C2 to construct the Qk. We begin
with a brief review of cutting-plane methods. We then present our cutting-plane policy and
contextualize it in the setting of the homogeneous self-dual embedding (3.4).

7

Agrawal

5.1 Cutting Planes

Boyd and Vandenberghe (2007) provide a primer on cutting-plane methods; we highlight
the bits relevant to our discussion here.

Cutting-plane methods are used to find a point in some convex set C. In this setting, access
to the convex set is mediated by an oracle. The oracle supports a single operation: the
query operation. When we query the oracle at a point z, it first checks whether z is in
our targeted convex set. If z is indeed in C, then it tells us as much; otherwise, the oracle
returns a cutting-plane — that is, a hyperplane that separates the query point from C. In
particular, it returns to us an a 6= 0 and b such that

aTx ≤ b ∀x ∈ C, aT z ≥ b.

The nomenclature is due to the observation that a cutting plane eliminates the halfspace
{x | aTx > b} from our search for a point in C, and the algorithmic idea is that by
accumulating cutting planes, we can form a piecemeal outer approximation of the target
set C. There are a number of ways to exploit cutting planes to solve convex optimization
problems, but we will only focus on our particular application, as outlined in the following
subsection.

5.2 Constructing the Localization Sets via Cutting Planes

Recall that for a convex set C,

〈x0 −ΠC(x0), x−ΠC(x0)〉 ≤ 0, ∀x ∈ C.

This simple fact provides us with a convenient way to obtain true statements (i.e., cutting
planes that take the form of supporting hyperplanes) about our convex set C1 ∩ C2. In
each iteration of (4.2), we obtain at least two cutting planes: one from projecting onto C1

and one from projecting onto C2. Because every point in C1 belongs to the appropriate
halfspace defined by its cutting plane and similarly for C2, every point in C1 ∩ C2 must
belong to the intersection of the two halfspaces corresponding to the cutting planes.

To be more concrete, let OC1 be a cutting-plane oracle for C1 and OC2 be a cutting-plane
oracle for C2. When an oracle OC is queried at a point x0, it returns with exactly two pieces
of information:

x̃ := ΠC(x0),

H := {x | 〈x0 − x̃, x− x̃〉 ≤ 0} ⊇ C,

where x̃ is the projection of x0 onto C and H is a hafspace containing C and defined by the
cutting plane obtained from the projection. Equipped with oracles OC1 and OC2 , we can
describe a cutting-plane instantiation of the projection-localization family, which we call
the cutting-plane alternating projections method. The method, in its simplest form, is an

8

A Cutting-Plane Alternating Projections Algorithm

iteration

(yk,Hyk) = OC1(xk), (5.1)

(zk,Hzk) = OC2(yk),

Qk := Qk−1 ∩Hyk ∩Hzk

xk+1 = ΠQk
(zk),

where Q0 = Rn.

There is a trade-off between the number of cutting planes that describe each Qk (i.e., the
descriptiveness of the outer approximations) and the cost of computing each iteration. The
more descriptive the outer approximations, the more progress each iteration will make but
the more expensive each projection onto the Qk will be. For this method to be practical
when applied to large problems, the projections onto Qk must be inexpensive relative to the
projections onto C1 and C2. So, in practice, we might impose a cap on the maximum number
of cutting planes that define Qk, and we might also experiment with different policies for
pruning cutting planes. Boyd and Vandenberghe (2007) propose heuristics for quantifying
the informativeness of a cutting plane and for pruning redundant ones, and many of these
heuristics may prove relevant here. A thorough analysis of pruning policies as they pertain
to our method is a topic for future work.

5.2.1 Application to the Homogeneous, Self-Dual Embedding

In the homogeneous self-dual embedding (3.4), our set C1 is a cartesian product of cones
and our set C2 is a subspace. We can specialize the application of our cutting-plane method
to this embedding, in the following two senses. First, the projection onto C1 yields not a
single halfspace but in fact a halfspace for each of the cones that compose the cartesian
product C1. Indeed, the cone K that is present in the provenance of the embedding (i.e.,
in problem (3.1) may itself be a a cartesian product of cones. And second, the projection
onto the subspace C2 yields not a halfspace but a hyperplane that all points in C2 must
satisfy; this holds because of the orthogonal complementarity properties of subspaces (i.e.,
〈x0 − ΠC2(x0), x − ΠC2(x0)〉 = 0, for all x ∈ C2). We can use these two facts in order to
generate more precise outer approximations Qk of C1∩C2 at each step of the iteration (5.1).

6. Software and Numerical Experiments

In order to empirically benchmark our cutting-plane alternating projections method, we
implemented a python library that allows for rapidly prototyping projection methods and
evaluating them on a suite of cone programs that are reduced to covnex feasibility form.
We used our library to evaluate the cutting-plane alternating projections algorithm on a
number of problems. Our initial findings suggest that the cutting-plane alternating projec-
tions method significantly outperforms classicial alternating projections; however, it roughly
matches the performance of and in some cases underperforms ADMM/SCS. An interesting
result in and of itself is that Dykstra’s algorith, which was not surveyed in this paper due to

9

Agrawal

space constraints, more or less tracks the performance of alternating projections and thus
underperforms ADMM.

6.1 A Library for Rapidly Prototyping Projection Methods

An alpha version source code is freely available on Github3; even in its early stages, the
library should prove useful for other researchers. The projection methods library is imple-
mented in Python and adheres to an object-oriented framework that closely matches the
oracle formulation presented in section 5.2. Clients can choose to solve abritrary convex
feasibility problems, specified using an atomic set of convex sets and a cartesian product of
sets, as well as homogeneous self-dual embeddings. Currently, only the non-negative, zero,
free, and second-order cones are implemented. Our library does interface with CVXPY, so
users can describe arbitrary convex sets if they so wish, at the cost of incurring the overhead
that CVXPY brings to the table.

For a research library designed for prototyping, it is reasonably efficient. When solving
homogeneous self-dual embeddings, the majority of time is spent factorizing the KKT matrix
of the projection onto the affine set; this factorization occurs exactly once. Projections
onto the aforementioned cones are computed analytically. For reference, our library takes
on the order of seconds (less than 10) to run 300 iterations of von Nuemann alternating
projections on a cone program with variable size 1000 and 104 non-zeros in the data matrix
when executing on an Ubuntu virtual machine (vagrant on VirtualBox) attached to a 2012
MacBook Pro.

6.2 Numerical Experiments

We evaluated the cutting-plane alternating projections method on a number of randomly
generated feasible cone programs (i.e., problems of the form 3.1). Our algorithm under-
performs ADMM/SCS when applied to linear programs and composite cone programs, but
exhibits quadratic-like convergence when applied to problems where the cone K is simply
one of the zero cone, the non-negative cone, or the second order cone. Our extremely fast
convergence in the latter experiments is the empirical counterpart of the result proved by
Ali et al. (2017) — these authors present a quasi-Newton ADMM method and show that it
converges quadratically for these simple cone programs.

When evaluating our algorithms, we defined the residual at each step as the sum of the `2
distances of each iterate xk to the sets C1 and C2. Additionally, we reported the relative
primal error, defined as |cTx− p?|/|p?|, for the cone program (3.1) that was the provenance
of the feasibility problem. In our plots, “dyk” refers to Dykstra’s algorithm, “altp” to
von Neumann’s alternating projections algorithm, “scs“ to SCS/ADMM, “apop alt” to the
cutting-plane alternating projections method, and “apop alt” to the cutting-plane averaged
projections method, where averaged projections is the well-known, classical variant of alter-
nating projections (it is alternating projections applied to the cartesian product of the sets

3. https://github.com/akshayka/projection-methods/

10

https://github.com/akshayka/projection-methods/

A Cutting-Plane Alternating Projections Algorithm

Figure 1: Random linear program. Note
that SCS outperforms our cutting-plane
method (apop alt), and our method in
turn outperforms alternating projections.

Figure 2: Random cone program, K
the cartesian product of the zero, non-
negative, and two second-order cones,
each of size 500, and with a data matrix
holding 104 random Gaussian entries.

C1 and C2 and the average set). In all runs of the cutting-plane methods, we evicted the
least recently added hyperplanes and halfspaces after the number of cutting planes exceeded
some threshold.

6.2.1 Linear Programs

Our first type of problem is a simple linear program subject to equality constraints Gx−h =
0 and x ≥ 0. We solved exactly the same problem instance solved by Ali et al. (2017),
ensuring that the generated problem was feasible. We took G of size 300 by 600, fully dense,
as did Ali et al. (2017), and canonicalized the problem to a cone program in the obvious way
using the zero and the non-negative cones. Our results are plotted in Figure 1; note that we
limited the cutting-plane methods to hold at most 50 halfspaces and 50 hyperplanes. The
cutting-plane alternating projection method achieved a relative primal error of 3.3× 10−4,
while SCS achieved an error of 1.2 × 10−5. Alternating projections fared much worse,
achieving an error of 1.4 × 10−2. The sharp drop in the residuals of the cutting-plane
method starting at iteration 50 is curious, and it begs further investigation into pruning
policies and more generally into the management of cutting planes. Also note that the
cutting-plane methods initially outpace SCS, only to flatten out.

6.2.2 Cartesian Product Cone Programs

The second problem on which we profiled our algorithms was a random cone program where
the cone K was the cartesian product of the zero, non-negative, and two second-order cones,
each of size 500. The variable x was of dimension 1000, data matrix A ∈ R2000×1000 was
randomly filled with 104 Gaussian entries. We followed exactly the same procedure outlined
by O’Donoghue et al. (2016) in order to ensure that the generated cone program was feasible.

11

Agrawal

Our results are plotted in Figure 2. The relative primal errors for the alternating cutting-
plane method, SCS, and alternating projections were 7.2×10−3, 1.8×10−6, and 9.9×10−2.

6.2.3 Single-Cone Programs

Finally, the last type of problem involved problems where the cone was simple either the
zero cone, the non-negative cone, or the second-order cone. Both the cutting-plane methods
and SCS solve these simple problems more or less exactly (up to numerical fluctuations),
as shown in Figure 3, while classical alternating projections struggles. In this light, the
quadratic convergence result by Ali et al. (2017) is perhaps not that interesting.

Random zero cone. Random non-negative
cone.

Random second-order cone.

Figure 3: Our algorithm exhibits quadratic-like convergence on simple problems.

7. Future Work

Our numerical experiments show that while cutting-plane method certainly accelerates al-
ternating projections, it does not in its current form outperform ADMM. There are two
complementary lines of future work that we are pursuing in an attempt to increase the
performance of our algorithm. The first line of work involves experimenting with pruning
policies, caps on the size of the Qk, over-projections, and heavy-ball momentum in an at-
tempt to accelerate the cutting-plane alternating projections method in its current form.
The second line of work is to use the cutting-plane method to augment ADMM itself. Such
an augmentation must be done with care to ensure that it does not break the convergence
properties of ADMM, nor interfere with properties that make ADMM faster than alternat-
ing projections to begin with. Both lines of research are being actively investigated.

8. Conclusion

In this paper, we presented a family of hybrid localization-projection methods that can
be viewed as a generalization of von Neumann’s method of alternating projections. We
then instantiated a particular algorithm from our family that constructs localization sets
using cutting planes, and showed empircally that this algorithm significantly accelerates von

12

A Cutting-Plane Alternating Projections Algorithm

Neumann’s classical alternating projections method but underperforms ADMM, at least
when applied to the homogeneous self-dual embedding of a conic primal-dual pair. That
such a simple technique accelerated such a simple method is nonetheless promising, and this
result motivates further study into augmenting projection algorithms with cutting-planes.

Acknowledgments

I would like to acknowledge Stanford professors Stephen Boyd, for guiding the development
of this investigation, and John Duchi, for teaching an engaging course on statistical learning
theory for which this report was prepared.

References

Alnur Ali, Eric Wong, and J Zico Kolter. A semismooth newton method for fast, generic
convex programming. arXiv preprint arXiv:1705.00772, 2017.

Heinz H Bauschke and Jonathan M Borwein. On the convergence of von neumann’s alter-
nating projection algorithm for two sets. Set-Valued Analysis, 1(2):185–212, 1993.

Heinz H Bauschke and Jonathan M Borwein. On projection algorithms for solving convex
feasibility problems. SIAM review, 38(3):367–426, 1996.

Stephen Boyd. Subgradient methods. 2003. Lecture notes on convex optimization, from
the Stanford course EE 364B.

Stephen Boyd and Jon Dattorro. Alternating projections. 2003. Lecture notes on convex
optimization, from the Stanford course EE 364B.

Stephen Boyd and Lieven Vandenberghe. Localization and cutting-plane methods. 2007.

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Distributed
optimization and statistical learning via the alternating direction method of multipliers.
Foundations and Trends R© in Machine Learning, 3(1):1–122, 2011.

Ward Cheney and Allen A Goldstein. Proximity maps for convex sets. Proceedings of the
American Mathematical Society, 10(3):448–450, 1959.

Eric Chu, Neal Parikh, Alexander Domahidi, and Stephen Boyd. Code generation for em-
bedded second-order cone programming. In Control Conference (ECC), 2013 European,
pages 1547–1552. IEEE, 2013.

Steven Diamond and Stephen Boyd. Cvxpy: A python-embedded modeling language for
convex optimization. Journal of Machine Learning Research, 17(83):1–5, 2016.

Daniel Gabay and Bertrand Mercier. A dual algorithm for the solution of nonlinear vari-
ational problems via finite element approximation. Computers & Mathematics with Ap-
plications, 2(1):17–40, 1976.

13

Agrawal

Bingsheng He and Xiaoming Yuan. On the o(1/n) convergence rate of the douglas–rachford
alternating direction method. SIAM Journal on Numerical Analysis, 50(2):700–709, 2012.

Brendan O’Donoghue, Eric Chu, Neal Parikh, and Stephen Boyd. Conic optimization via
operator splitting and homogeneous self-dual embedding. Journal of Optimization Theory
and Applications, 169(3):1042–1068, 2016.

Ernest K Ryu and Stephen Boyd. Primer on monotone operator methods. 2016.

John Von Neumann. Functional Operators (AM-22), Vol. II. The Geometry of Orthogonal
Spaces. Princeton University Press, 1950. Reprint of lecture notes originally compiled in
1933.

Yinyu Ye, Michael J Todd, and Shinji Mizuno. An o(
√
nL)-iteration homogeneous and self-

dual linear programming algorithm. Mathematics of Operations Research, 19(1):53–67,
1994.

14

	Introduction
	The Convex Feasibility Problem
	Algorithms
	The Method of Alternating Projections
	The Alternating Directions Method of Multipliers

	Reducing Cone Programs to Convex Feasibility Problems
	Homogeneous Self-Dual Embeddings of Cone Programs

	A Family of Projection-Localization Algorithms
	Description of the Projection-Localization Algorithm Family
	Proof of convergence.

	Cutting-Plane, Alternating Projections for Convex Feasibility
	Cutting Planes
	Constructing the Localization Sets via Cutting Planes
	Application to the Homogeneous, Self-Dual Embedding

	Software and Numerical Experiments
	A Library for Rapidly Prototyping Projection Methods
	Numerical Experiments
	Linear Programs
	Cartesian Product Cone Programs
	Single-Cone Programs

	Future Work
	Conclusion

