
1

B-CRAM: A Byzantine-Fault-Tolerant
Challenge-Response Authentication Mechanism

Akshay Agrawal, Robert Gasparyan, Jongho Shin
{akshayka, robertga, jongho.shin}@cs.stanford.edu

Abstract—B-CRAM is an authentication protocol that
enables applications to consult a distributed trusted third-
party (TTP) in order to validate end-user identities.
Short for Byzantine-Fault-Tolerant Challenge-Response
Authentication Mechanism, B-CRAM’s novelty lies in its
resilience to node failures, malicious or otherwise. The
TTP layer, which stores end-user credentials, implements
the BFT2F replication algorithm. In particular, given a
TTP distributed 3f + 1 ways, our system guarantees both
safety and liveness when no more than f nodes fail;
moreover, we bound the space of possible attacks when no
more than 2f nodes fail. B-CRAM prevents adversaries
from obtaining sensitive end-user information, no matter
how many TTPs they compromise: Unlike many other
authentication protocols, B-CRAM ensures that TTPs do
not see plaintext end-user passwords, opting for a public
key infrastructure instead. To demonstrate our protocol’s
viability, we integrated B-CRAM with an SMTP server.
Preliminary experiments suggest that our implementation
of B-CRAM can support modestly sized populations.

I. INTRODUCTION

The problem of authentication is fundamental in com-
puter networks and security – simply put, it is the prob-
lem of verifying identities [3]. A particularly widespread
flavor of authentication is that of an application server
verifying the identities of its users. In the traditional
implementation of client-server authentication, the client
stores a set of credentials, typically a username and
password, with application servers [6]. This approach
unfortunately requires clients to remember multiple cre-
dentials, and worse still increases the chance that any
one of her credentials will be leaked.

Many modern authentication protocols [6], [16], [8],
[13] eschew the traditional model by introducing a
trusted third party (TTP) between the client and appli-
cations servers. In this model, when a client identifies
herself to an application server, the application server
requests some TTP-provided proof in order to authenti-
cate her. The burden of storing credentials, then, is lifted
off of the application servers and placed squarely on the
shoulders of the TTP.

Unfortunately, TTP authentication protocols often suf-
fer from fault-intolerance and security vulnerabilities [9].
For example, in the standard implementation of Kerberos,

the TTP is a single point of failure – if it were to fail, all
authentication would come to a halt. We can alleviate this
shortcoming by distributing the KDC and maintaining
its state with a replication algorithm; indeed WebAuth,
Stanford’s own authentication system, does just that [16].

While replication increases redundancy, it does little
to guard against byzantine failures. In the context of
authentication, fault-tolerance to malicious attacks on
the TTPs is particularly important – a compromised
system could falsely authenticate imposters. None of the
WebAuth, OpenID, or OAuth protocols require that their
TTPs survive byzantine faults [16], [8], [6]. Even if the
protocols did replicate their data using PBFT [2], security
vulnerabilities would remain. The TTPs in each of these
protocols see plaintext passwords – an adversary could
dump end-users’ passwords after compromising but a
single node.1

In order to address these shortcomings, we propose
a new authentication protocol: Byzantine-Fault-Tolerant
Challenge-Response Authentication Mechanism, or B-
CRAM. Like the previously mentioned protocols, B-
CRAM leverages a TTP in order to authenticate end-
users to application servers. B-CRAM’s novelty lies
in its resilience to byzantine faults. We distribute the
TTP, which stores user credentials, 3f + 1 ways. By
requiring TTPs to achieve consensus via BFT2F, our
system guarantees both safety and liveness when no
more than f nodes fail; moreover, we bound the space
of possible attacks when no more than 2f nodes fail.

B-CRAM also prevents adversaries from obtaining
sensitive end-user information, no matter how many
TTPs they compromise: Unlike other authentication pro-
tocols, B-CRAM ensures that TTPs do not see plaintext
end-user passwords, opting for a public key infrastructure
instead. In order to demonstrate the viability of B-
CRAM, we integrated it into a custom SMTP authen-
tication protocol.

The remainder of this paper describes our network and
security model (section two), provides a brief primer on
BFT2F (section three), presents the B-CRAM protocol

1The protocol in [17] suggests a revision of Kerberos that uses
PKI, but it is not byzantine-fault-tolerant.



2

(section four), briefly details our implementation (section
five), quantitatively evaluates B-CRAM (section six),
discusses trade-offs (section seven), and proposes future
work (section eight).

II. SYSTEM MODEL AND ASSUMPTIONS

Our system consists of users, application servers,
authentication servers, and the TTP. Users are uniquely
identified by their public keys. A user stores her public
key and private key, encrypted with their password, in the
TTP; we refer to this key pair as the user’s credentials.
The TTP consists of 3f + 1 replicated machines that
maintain their state using the BFT2F replication algo-
rithm, where f is a system parameter. We refer to any
one of these 3f+1 machines as a TTP node. The TTP has
zero knowledge of users’ passwords; all encryption and
decryption of private keys is done locally at the user. An
set of authentication servers service credential-related
requests from users and forward them to the TTP; all
requests from an authentication server are signed with
its individual public key. These servers act as BFT2F
clients [10]. Finally, application servers are the quantity
to which users authenticate.

A public key infrastructure is assumed to enable TTP
nodes to authenticate their peers; each node knows the
public key of every other node in the TTP, and the public
key of every authentication server. Authentication servers
know the public key of every TTP node.

We assume a failure model similar to that assumed
by Li and Mazieres [10]: our TTP is a networked,
asynchronous distributed system where messages be-
tween nodes may be delayed, duplicated, reordered, or
dropped; however, the network cannot indefinitely delay
communication between honest nodes. We additionally
assume independent byzantine failures, where nodes may
behave arbitrarily. Adversaries cannot forge signatures.

Notationally, we use σ′ to denote a public key, σ to
denote a private key, uid to denote a user’s id, and pwd to
denote a user’s password. A subscript on the two former
symbols communicates that the key belongs to the owner
corresponding to that subscript. We use {•}K−1 to denote
that the quantity • is signed with private key K and {•}K
to denote that • is encrypted with secret K.

III. BACKGROUND: BFT2F AND FORK*
CONSISTENCY

Practical byzantine fault tolerance, as proposed by
Castro and Liskov, is brittle: As soon as more than f
nodes fail, all safety and liveness guarantees are lost [2].
Li and Mazieres’ BFT2F replication algorithm builds
upon PBFT to provide guarantees about system state
when more than f nodes fail, while simultaneously
preserving the safety and liveness guarantees that PBFT

provides when at most f nodes fail. When no more than
f nodes fail, BFT2F is both safe and live. When more
than f but fewer than 2f+1 nodes fail, BFT2F sacrifices
liveness but guarantees fork* consistency, restricting ad-
versaries to a contrived attack space.

Fork* consistency is a variant of fork consistency
[10]. A particularly nice property of fork consistency is
that compromised TTP nodes cannot convince the TTP
to commit an operation that no client requested; i.e.,
TTP nodes cannot invent operations [12]. Under fork
consistency, malicious nodes can disrupt the system in
one of two ways: (1) compromising liveness and (2)
convincing honest nodes to commit different operations
for a given sequence number. While malicious nodes can
fork the state of the system, as in (2), fork consistency
guarantees that clients track a single fork set – a group
of at least 2f + 1 nodes that agrees upon some history
of operations. Intuitively, this ensures that clients never
see future inconsistent with their histories, and that no
client operation crosses multiple forks.

Fork* consistency differs from fork consistency in that
a single operation from a client might cross multiple
branches; this could happen if the hash chain digest
history known by the client corresponded to some state
before the system had forked. BFT2F opts for fork*
consistency instead of fork consistency because a two-
round protocol is required to satisfy the latter, whereas a
one-round protocol can satisfy the first. In our context,
an operation crossing multiple branches will not likely
cause significant damage.

B-CRAM gets two boons from fork* consistency: It
allows us to identify a subset of the dishonest nodes –
the intersection of any two fork sets consists exclusively
of dishonest nodes – and limits intruders to contrived
attacks. Once our authentication servers realize the state
is forked, they can raise an alarm and an administrator
can flush out the intruders. In the general case, under
fork* consistency, dishonest nodes will not be able to
authenticate imposters; false authentication might occur,
however, if the system forked while a user attempted
to change her credentials. We explore the types of fork
attacks possible in B-CRAM in the next section.

IV. THE B-CRAM PROTOCOL

As the name implies, B-CRAM is a byzantine-
fault-tolerant challenge-response authentication mecha-
nism. Challenge-response authentication consists of two
phases: a challenge, in which the verifier presents some
problem to an authenticatee, and a response, in which
the authenticatee proves that it has solved the provided
problem [11].



3

A. The B-CRAM Architecture

Recall that the B-CRAM architecture consists of four
entities: users, application servers, authentication servers,
and the TTP. A user u stores her credentials with the TTP
in the form of a tuple (uid, σ′u, {σu}pwd). All communi-
cation between the TTP and the user proceeds through
an authentication server; that is, application servers are
BFT2F clients who track a fork* consistent state of the
TTP. The TTP is distributed 3f+1 ways, providing safety
and liveness with up to f failures and fork* consistency
with up to 2f failures. Authentication servers may be
distributed an arbitrarily large number of ways, allowing
for scalability.

B. Credential Management

We provide a concise API for efficient cre-
dential management. There are three methods for
users: creating a credential (sign-up), requesting
authentication (sign-in), and updating a credential
(update-cred), as shown in Table I.

TABLE I: Credential Management API

Operation Arguments

sign-up uid, σ′
u, {σu}pwd

sign-in uid, token

update-cred {uid, σ′
newu

, {σnewu}pwd}σ−1
u

Table II defines the messages referenced in each of the
following subsections.

1) Signing Up: In order to register herself with the
TTP, a user simply picks a uid and generates a pub-
lic key σ′u and a private key σu generated with, say,
OpenSSL [14]. After picking a password and encrypting
the latter with it, she sends a sign-up message to an
authentication server, who then wraps it in a BFT2F-OP
message and multicasts it to every node in the TTP.
The TTP replicates the operation using BFT2F, failing
the operation if uid already exists in its store. The
authentication server waits for the TTP to respond with
2f+1 distinct matching BFT2F-REPLY messages. Once
it collects these messages, it responds to the user with the
appropriate error code (success or failure). The user can
then independently verify whether the transaction really
did succeed or fail by issuing a sign-in request.

2) Signing In: Signing in requires the user to partic-
ipate in a challenge-response authentication procedure,
sketched in Figure 1. In order to prove her identity, a
user must declare some user-id, prove that some public-
key is bound to that user-id, and finally prove that she
owns her declared user-id.

The user begins by declaring herself to an applica-
tion server to which she wishes to authenticate. The

application server issues her a token for accounting and
to guard against replay attacks, and challenges her to
procure proof that she owns her declared user id. The
user issues a sign-in request to an authentication
server, who then multicasts it to the TTP. Upon collecting
2f+1 matching BFT2F-REPLY<sign-in> messages
corresponding to the requested operation, the authenti-
cation server sends a SIGN-IN-REPLY message to the
user, which consists of her public key, her private key
encrypted with her password, and a set S of 2f + 1
distinct tuples (σ′t, {token+ σ′u}σt−1 ), where t is a TTP
node. S constitutes proof that σ′u is bound to the declared
user-id. Finally, the user decrypts her password, signs
her public key and sends a SIGN-IN-PROOF message
to the application server, who looks up the user’s token
and verifies every signature in the message.

Fig. 1: B-CRAM sign-in. The TTP is a PKI key-value store
comprised of 3f+1 nodes running BFT2F. Here, we show an example
of a user authenticating herself to an application. Steps 1 and 2
constitute a token-exchange and initiate a challenge – the user must
procure proof that a some public key is bound to her. In step 6, the
authentication server returns to the user her public and private key
pair, the latter encrypted with her password, and a set of 2f +1 RSA
signatures; this step is implicitly a challenge, since the user cannot
correctly sign the public key unless she can recover the private key.
The user then signs her public key and ships it and the signatures to
the application server in step 7, completing the authentication.

3) Updating Credentials: To change her credentials, a
user sends an update-cred request to an authentica-
tion server. This request contains her new set of creden-
tials, signed with her current private key: {uid, σ′newu

,
{σnewu

}pwd}σ−1
u

, where pwd is usually a new password.
The authentication server multicasts the operation to
the TTP. If a TTP node determines that the supplied
signature does not match that what would be produced
by the private key bound to uid, it fails the operation;
otherwise, the operation succeeds. In either case, TTP
nodes respond to the authentication server, who sends a
SIGN-IN-REPLY to the user after collecting 2f + 1
matching BFT2F-REPLY<update-cred> messages.

In the update-cred operation, the TTP implicitly
challenges the user to provide it with a valid signature. If
it cannot produce such a signature, it fails the challenge-
response – this prevents adversaries from maliciously



4

Direction Message Contents Direction Message Contents

c ∈ AS → TTP BFT2F-REQ<op> op, ts, c, V c ∈ AS → user u SIGN-UP-REPLY errno, uid, σ′
u, {σu}pwd

t ∈ TTP → c ∈ AS BFT2F-REPLY<res> c, ts, res, {t, view, n,HCDn}
σ−1
t

c ∈ AS → user u UPDATE-CRED-REPLY errno, uid, σ′
newu

, σnewu

res : sign-up {errno, uid, σ′
u, {σu}pwd}σ−1

t
c ∈ AS → user u SIGN-IN-REPLY errno, uid, σ′

u, {σu}pwd, S
res : sign-in errno, uid, σ′

u, {σu}pwd, user u → app. server AUTH-TOK-REQ uid

{token+ σ′
u}σ−1

t
, σ′
t app. server → user u AUTH-TOK-REPLY token

res : update-cred {errno, uid, σ′
newu

, {σnewu}pwd}σ−1
t

user u → app. server SIGN-IN-PROOF uid, {σ′
u}σ−1

u
, S

TABLE II: Message Definitions. Listed here are all the messages sent between parties in B-CRAM. Operations possible in a BFT2F-REQ map
1:1 to the operations in table I. ts stands for timestamp, V for authentication server c’s current version, errno for a return status message, and S
for a set of 2f + 1 distinct tuples (σ′

t, token+ σ′
uσt

), where t is a TTP node.

changing other users’ credentials.

C. Forked States

Since the TTP is replicated using BFT2F, the state
maintained by B-CRAM might fork. Forks correspond
directly to our credential management API:

1) User Existence
A sign-up might be processed by one fork but
not another; as such, the TTP could tell some
clients that a user exists while informing others
that she does not.

2) Audit Trail
Accounting information logged during a
sign-in (i.e. the log about the circumstances
of a user log-in) might differ between two or
more branches.

3) User Credentials
Nodes in different fork sets might map different
credentials to the same user.

1) Implications for Use Cases: The implications of
these forks depend upon the context in which B-CRAM
is used. For example, imagine a setting in which B-
CRAM was used to provide authentication in the style
of OpenID or WebAuth. Forking on user existence and
audit trails, while inconvenient for the user, would not
cause significant damage alone; however, a fork on user
credentials might. In particular, if some user changes her
credentials because her password was compromised, ma-
licious TTP nodes could fork the system and prevent the
change from propagating throughout the entire system –
thus, the adversary who stole her password might retain
access to her account across all applications.

We could contain the damage incurred by a user cre-
dentials fork if there was some mapping from application
servers to authentication servers. Say that each authen-
tication server only served some subset of applications,
and then say that malicious TTP nodes caused a a user
credentials fork. Unlike the previous example, in this
case, our adversary would only retain access to the user’s
account across a subset of applications; in particular,
across those applications which mapped to authentication
servers tracking forks in which the credential change was

not processed. This might mean that the adversary might
be incorrectly authenticated to, say, Facebook, but she
won’t be granted entry to Amazon.

A mapping from applications to authentication servers
could be achieved by partitioning the space of domain
names with consistent hashing; if an authentications
server received a request for a domain name that it
did not serve, it would simply forward it to the correct
authentication server. Increasing the number of authenti-
cation servers would in theory, then, minimize the risks
associated with a user credentials fork. In practice, how-
ever, another problem arises: If just one authentication
server were compromised by an adversary, then that
adversary could route all requests through that authenti-
cation server and bypass the keyspace partitioning.

Perhaps the ideal use case for B-CRAM, then, might
be one in which each application server was bound to a
unique authentication server. This is, in essence, the card-
swipe example mentioned in [10]. But the use case ex-
tends beyond card-swipe authentication. B-CRAM could
be particularly nice for logging into computers at a physi-
cal site – e.g., a governmental facility where security was
particularly important. Each computer would function
both as an authentication server and as an ”application
server” – in order to log-in, a user would enter his user id
and the computer would form the appropriate credential
management operation, wrap it in a BFT2F-REQ, and
forward it to the TTP.

2) Detecting Forks: We enable clients to detect forks
by slightly modifying BFT2F. In BFT2F, a node t ignores
a request from a client c if the HCD in c’s current version
vector cur(V ) does not match the HCD t sent to c in
its last reply [10]. We propose that rather than ignoring
the request, t respond to the client with HCDcur(V ).n.
There are two cases:

1) t has not yet committed cur(V ).n. This could
occur if t were in the same fork set as c but was
simply lagging behind other nodes, or if t were in
another another fork set. In either case, t responds
with HCDcur(V ).n = NULL.

2) t has committed cur(V ).n. This implies that t



5

is in a different fork set than the one serving
c. Upon receiving t’s response, c will see that
HCDcur(V ).n 6= cur(V ).HCD – i.e., it will
realize that the state is forked and will raise an
alarm accordingly.

TTP nodes can independently check for forks by in-
specting commit messages. When committing sequence
n, a mismatch between a received HCDn and a TTP
node’s expected HCDn implies a fork.

D. CRAM-CERT on B-CRAM: An SMTP Extension

As a proof of concept, we implemented an original
SMTP authentication protocol. Dubbed CRAM-CERT
and backed by B-CRAM, our authentication protocol
can be swapped out for CRAM-MD5. Based on the
HMAC-MD5 algorithm, CRAM-MD5 provides secure
authentication in that the authentication token changes
for each authentication – eavesdropper cannot use a
rainbow table2 to find passwords [7].

CRAM-CERT opts to use the user’s public key, signed
by her private key, instead of a password, and RSA
signatures instead of MD5 hashes. Then the SMTP server
and the user use the public key to upgrade the TCP
socket to a TLS socket via the STARTTLS protocol
[5]. Algorithm 1 shows an example of CRAM-CERT
in action, and Table III compares CRAM-CERT and
CRAM-MD5.

Protocol Token Authentication Object Verification
CRAM-MD5 nonce+domain token+password hash comparison
CRAM-CERT nonce+domain token+σ′

u signature verification

TABLE III: CRAM-CERT vs. CRAM-MD5. CRAM-CERT, our
SMTP authentication extension, uses B-CRAM to authenticate users
and then upgrades their connection with STARTTLS.

V. IMPLEMENTATION

To the best of our knowledge, we offer the first open-
source implementation of BFT2F3. We implemented
the core algorithm and view changes; we have yet to
implement checkpointing and garbage collection. The
entire B-CRAM stack was implemented in Python, while
CRAM-CERT was implemented as a Node.js extension
to Haraka [4]. Google’s Python Protocol Buffers were
used for serialization, and Apache Thrift was used for
RPCs made from the authentication servers to the TTP.

We list some takeways from our implementation:
• BFT2F makes it somewhat difficult for our au-

thentication servers to issue multiple concurrent

2A rainbow hash table is a pre-computed structure that allows
attackers to recover passwords from hash values.

3The source code is available at https://github.com/akshayka/bft2f.

S: 220 smtp.server.com Simple Mail Transfer Service Ready
C: EHLO client.example.com
S: 250-smtp.server.com Hello client.example.com
S: 250-SIZE 1000000
S: 250 AUTH CRAM-CERT
C: AUTH CRAM-MD5
S: 334
PDQxOTI5NDIzNzJAc291cmNl1ci5hbmRyZuY211LmVkdT4=
C: cmpzMyBlYzNhNTlmZWQ-
zOTVhYmExZWM2MzY3YzRmNGI0MWFjMA==
S: 235 2.7.0 Authentication successful
C: EHLO client.example.com
S: 250-smtp.server.com Hello client.example.com
S: 250-SIZE 1000000
S: 250 STARTTLS
C: STARTTLS
S: 220 Go ahead.

Algorithm 1: An example SMTP authentication using
CRAM-CERT on B-CRAM.

requests. Say that one request from a given au-
thentication server commits at some number of
nodes, and then that the same authentication server
issues another request but without having seen the
BFT2F replies for the first request. The nodes that
committed the first request will reject the second
one, since its cur(V ).HCD will not match the
HCD that those nodes have in their replay caches.
Since the vast majority of our operations are sign-
ins, we sidestep this problem by implementing the
read-only optimization mentioned in PBFT and
BFT2F [2], [10].4

• The number of TTP nodes (3f+1) must be known
to the application servers, so that any application
server can make sure that it receives at least
(2f + 1) valid signature. This number can be
disseminated in various ways; a rendezvous point
(e.g., a website), DNS entries, etc..

• B-CRAM doesn’t expire signatures, but applica-
tion servers are free to choose their own policies
regarding token expiration.

VI. MEASUREMENTS AND EVALUATION

In evaluating the performance of our protocol, we used
Mininet to simulate a B-CRAM topology consisting of
seven TTP nodes, one authentication server, one applica-
tion server, and one user server; 10 milliseconds of delay
was added to each link. Our simulation ran on a single
m3.2xlarge Amazon ec2 instance, equipped with eight
virtual CPUs and 30 GiB of RAM, and we conducted an
experiment to measure latency. Our experiment began

4The read-only optimization forfeits the ability to maintain an
agreed-upon log of sign-in metadata; administrators may disable it
if they value such accounting information over efficiency.



6

by signing-up 20 users. It then issued 200 sign-in
requests, mapped over 20 processes. We averaged 52.6
milliseconds per end-to-end authentication (from step 1
to step 7 in Figure 1), and 580 milliseconds per sign-up.
The read-only optimization accounts for the discrepancy
between these two numbers.

Our numbers should only improve with more hardware
and authentication servers, especially considering that
each of our eight virtual CPUs peaked at 100 percent
utilization during our experiment. Nonetheless, an av-
erage of 52.6 milliseconds per sign-in scales to 1140
sign-ins per minute, likely enough to serve a small
population of users (e.g., a small college campus) and
certainly enough for the on-site computer access use case
mentioned previously.

VII. DISCUSSION

When it comes to fault-tolerance and security, B-
CRAM has many advantages over its peers. By replicat-
ing the TTP with BFT2F, we not only survive byzantine
failures but also leave an audit trail and introduce a
mechanism to identify malicious nodes. By taking a PKI
approach, we circumvent the problem of leaked pass-
words. That said, while the TTP will not leak passwords,
B-CRAM remains vulnerable to dictionary attacks. Any
user can fetch the password-encrypted private keys of all
other users in the system. As such, we recommend both
choose sufficiently strong passwords and change their
credentials periodically.

For the sake of robustness, we do sacrifice efficiency.
Public key cryptography is notorious for its expensive
computation [1]. Additionally, B-CRAM’s use of multi-
cast in BFT2F makes the network latency among TTP
nodes relevant for service latency. B-CRAM’s robustness
also makes it a bit more unwieldy than other authentica-
tion protocols, since the user is non-trivially involved
in the process. Nonetheless, we could still adapt the
protocol for an OpenID or WebAuth-like purpose by,
say, implementing a browser extension for users. Finally,
because of the TTP, B-CRAM cannot be used for P2P
authentication, unlike [15].

VIII. FUTURE WORK

Given that BFT2F maintains a significant amount of
state, implementing checkpointing and garbage collection
is high on our list of priorities. Additionally, it would be-
hoove us to right a rigorous test-suite to that verified our
implementation, and to perform more robust experiments
in a non-simulated environment.

IX. CONCLUSION

Existing TTP authentication protocols suffer from both
availability problems and security vulnerabilities. We

present a B-CRAM, a more robust TTP authentication
protocol that uses redundancy, public key cryptography,
and BFT2F replication to address both of these concerns.
We also tweak BFT2F to allow for automatic detection of
forked state by both clients and nodes. We demonstrated
the protocol’s viability by introducing CRAM-CERT;
preliminary measurements suggest that our particular
implementation B-CRAM could be deployed as is for
modestly sized populations.

REFERENCES

[1] A Cost-Based Security Analysis of Symmetric and Asymmetric
Key Lengths. EMC. N.p., n.d. Web. 10 Dec. 2014.

[2] Castro, M., and Liskov, B., Practical Byzantine fault tolerance.
In Proceedings of the 3rd Symposium on Operating Systems
Design and Implementation, pages 173-186, New Orleans, LA,
February 1999.

[3] Haller, N. and Atkinson, R., On Internet Authentication, RFC
1704, October 1994.

[4] Haraka Manual. Haraka. N.p., n.d. Web. 10 Dec. 2014.
[5] Hoffman, P., SMTP Service Extension for Secure SMTP over

TLS, RFC 2487, January 1999.
[6] Hardt, D., Ed., The OAuth 2.0 Authorization Framework, RFC

6749, October 2012.
[7] Klensin, J., Catoe, R., and Krumviede, P., IMAP/POP AU-

THorize Extension for Simple Challenge/Response, RFC 2195,
September 1997.

[8] Lear, E., Tschofenig, H., Mauldin, H., and Josefsson, S., A Sim-
ple Authentication and Security Layer (SASL) and Generic Se-
curity Service Application Program Interface (GSS-API) Mech-
anism for OpenID, RFC 6616, May 2012.

[9] Levi, A. and Caglayan, M., The problem of trusted third party in
authentication and digital signature protocols, Antalya, Turkiye,
1997.

[10] Li, J. and Mazieres, D., Beyond one-third faulty replicas in
Byzantine fault tolerant systems. In NSDI 07

[11] M’Raihi, D., J. Rydell, S. Bajaj, S. Machani, and Naccache,
D., OCRA: OATH Challenge-Response Algorithm, RFC 6287,
June 2011. Web. 10 Dec. 2014.

[12] Mazieres, D. and Shasha, D.. Building secure file systems ‘ out
of Byzantine storage. In Proceedings of the 21st Annual ACM
SIGACT-SIGOPS Symposium on Principles of Distributed Com-
puting, pages 108117, July 2002. The full version is available
as NYU computer science department technical report TR2002-
826, May 2002

[13] Miller, S. P., Neuman, B. C., Schiller, J. I. and Salzer, J.
H. Kerberos Authentication and Authorization SystembyMIT
Project Athena, 1988.

[14] OpenSSL Overview. OpenSSLWiki. Web. 10 Dec. 2014.
[15] Pathak, V. and Iftode, L., Byzantine fault tolerant publickey

authentication in peer-to-peer systems. Computer Networks.
Special Issue on Management in Peer-to-Peer Systems: Trust,
Reputation and Security, 50(4):579596, March 2006.

[16] R. Schemers, and Allbery, R.. WebAuth Technical Specification.
Stanford University, 23 July 2014. Web. 05 Dec. 2014.

[17] Sirbu, M. A., and Chuang, J., C.-I. 1997. Distributed au-
thentication in Kerberos using public key cryptography. In
Proceedings of Symposium on Network and Distributed System
Security (San Diego, Calif., Feb.), IEEE Computer Society Press,
Los Alamitos, Calif.


